Sparse non-negative tensor factorization using columnwise coordinate descent
نویسندگان
چکیده
Many applications in computer vision, biomedical informatics, and graphics deal with data in the matrix or tensor form. Non-negative matrix and tensor factorization, which extract data-dependent non-negative basis functions, have been commonly applied for the analysis of such data for data compression, visualization, and detection of hidden information (factors). In this paper, we present a fast and flexible algorithm for sparse non-negative tensor factorization (SNTF) based on columnwise coordinate descent (CCD). Different from the traditional coordinate descent which updates one element at a time, CCD updates one column vector simultaneously. Our empirical results on higher-mode images, such as brain MRI images, gene expression images, and hyperspectral images show that the proposed algorithm is 1–2 orders of magnitude faster than several state-of-the-art algorithms. & 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
Descent methods for Nonnegative Matrix Factorization
In this paper, we present several descent methods that can be applied to nonnegative matrix factorization and we analyze a recently developped fast block coordinate method called Rank-one Residue Iteration (RRI). We also give a comparison of these different methods and show that the new block coordinate method has better properties in terms of approximation error and complexity. By interpreting...
متن کاملFe b 20 08 Descent methods for Nonnegative Matrix
In this paper, we present several descent methods that can be applied to nonnegative matrix factorization and we analyze a recently developed fast block coordinate method. We also give a comparison of these different methods and show that the new block coordinate method has better properties in terms of approximation error and complexity. By interpreting this method as a rank-one approximation ...
متن کاملVoice-based Age and Gender Recognition using Training Generative Sparse Model
Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...
متن کاملShort-Text Topic Modeling via Non-negative Matrix Factorization Enriched with Local Word-Context Correlations
Being a prevalent form of social communications on the Internet, billions of short texts are generated everyday. Discovering knowledge from them has gained a lot of interest from both industry and academia. The short texts have a limited contextual information, and they are sparse, noisy and ambiguous, and hence, automatically learning topics from them remains an important challenge. To tackle ...
متن کاملA Fast Algorithm for Nonnegative Tensor Factorization using Block Coordinate Descent and an Active-set-type method
Nonnegative factorization of tensors plays an important role in the analysis of multi-dimensional data in which each element is inherently nonnegative. It provides a meaningful lower rank approximation, which can further be used for dimensionality reduction, data compression, text mining, or visualization. In this paper, we propose a fast algorithm for nonnegative tensor factorization (NTF) bas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 45 شماره
صفحات -
تاریخ انتشار 2012